If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+x-3.4=0
a = 1; b = 1; c = -3.4;
Δ = b2-4ac
Δ = 12-4·1·(-3.4)
Δ = 14.6
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{14.6}}{2*1}=\frac{-1-\sqrt{14.6}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{14.6}}{2*1}=\frac{-1+\sqrt{14.6}}{2} $
| 9y+29-13+5=0 | | (s-2)(s+4)=0 | | 9(4x−8)=4(6x+9) | | 3w-1=144 | | 4×(5x-3)=78 | | -6x-(3)(3x+12)=39 | | 60+x=80+x | | 2x-7=4+x | | -6x-3(3x+12=39 | | 2t+5=15-t | | 4(p+6)=2p+16 | | -45x+15x^2-10x=0 | | 1.3+x=4.4 | | 28x^2-36x=0 | | 5x(+4)=30 | | 12x-8=4x+12-46 | | n-0,45=8.85 | | 5(4x+2)=180 | | 3x-10+12=x-8+6 | | 3u+15=66 | | 2(172-45)=x | | 3(4x+8)+2=14x | | 2u+5=4u=13 | | Y=4(x-36) | | t+6/t=5 | | x^2+0.05*x-0.003=0 | | 7d-5=261 | | x+24=x+12 | | s+3/4=s-2 | | -x2+6x=-1 | | 58=(3x+2) | | 5x+8(80)=80 |